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ABSTRACT

Many aspects of geophysical flows can be described compactly in terms of potential vorticity dynamics. The fact, however, that the
potential temperature can fluctuate at boundaries, and the implied inhomogeneous boundary condition, complicates considerations of
potential vorticity dynamics of flows for which boundary effects are dynamically significant.

It is shown that the inhomogeneous boundary condition for potential vorticity dynamics can be replaced by a homogeneous bound-
ary condition of constant potential temperature if the simplification of the boundary condition is compensated by a generalization of the
potential vorticity concept to a sum of the conventional interior potential vorticity and a singular surface potential vorticity. Functional
forms of the surface potential vorticity are derived from field equations in which the potential vorticity and a potential vorticity flux
appear as sources of flow fields in the same way in which an electric charge and an electric current appear as sources of fields in
electrodynamics. For the generalized potential vorticity of flows that need be neither balanced nor hydrostatic and that can be influ-
enced by diabatic processes and friction, a conservation law holds that is similar to the conservation law for the conventional interior
potential vorticity. The conservation law for generalized potential vorticity contains, in the quasigeostrophic limit, the well-known
dual relationship between fluctuations of potential temperature at a boundary and fluctuations of potential vorticity in the interior of
quasigeostrophic flows. A non-geostrophic effect described by the conservation law is the induction of generalized potential vorticity
by baroclinicity at a boundary, an effect that plays a role, for example, in mesoscale flows past topographic obstacles. Based on the
generalized potential vorticity concept, a theory is outlined of how a wake with lee vortices can form in weakly dissipative flows past a
mountain that has no adjacent frictional boundary layer.

Replacing the inhomogeneous boundary condition for potential vorticity dynamics by a homogeneous boundary condition of con-
stant potential temperature means that the flow domain in isentropic coordinates becomes time-independent, which allows one to
consider a mean budget of generalized potential vorticity throughout the entire entropic flow domain, including the surface layer of
isentropes that sometimes intersect the surface. From the mean budget of generalized potential vorticity, a balance condition is deduced
that relates the extratropical mean meridional mass flux along isentropes to eddy fluxes of interior potential vorticity and of surface
potential temperature. The generalized potential vorticity concept can therefore form a basis of theories of the mean meridional mass

flux along isentropes and of the thermal stratification of the extratropical atmosphere.

1. Introduction

Since the potential vorticity is materially conserved in
adiabatic and frictionless flows and since it contains all
relevant information about balanced flows in a single
scalar field, many aspects of geophysical flows can be
described compactly in terms of potential vorticity dy-
namics. For example, the propagation of Rosshy waves
and the development of baroclinic instability have tra-
ditionally been described in terms of quasigeostrophic
potential vorticity dynamics. And in situations in which
the quasigeostrophic approximation is inadequate, such
as for planetary-scale flows, considerations of potential
vorticity dynamics on isentropes (or on isopycnals in the
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ocean) have proven fruitful (see, e.g., Tung 1986; Rhines
and Young 1982). The fact, however, that the poten-
tial temperature can fluctuate at boundaries, and the im-
plied inhomogeneous boundary condition for potential
vorticity dynamics, complicates considerations of poten-
tial vorticity dynamics of flows for which boundary ef-
fects are dynamically significant. Bretherton (1966) has
shown that the inhomogeneous boundary condition for
quasigeostrophic potential vorticity dynamics can be re-
placed by a homogeneous boundary condition (of con-
stant potential temperature) if the simplification of the
boundary condition is compensated by including in the
quasigeostrophic potential vorticity a singular surface
potential vorticity. The quasigeostrophic surface poten-
tial vorticity is proportional to the potential temperature
fluctuations at the boundary. Extending Bretherton’s ar-



2 T. Schneider, I. M. Held, and S. T. Garner

gumentation, Rhines (1979) has shown that not only sur-
face potential temperature fluctuations, but also the to-
pography of a boundary can be taken into account in
a quasigeostrophic surface potential vorticity. Brether-
ton’s and Rhines’s generalization of the quasigeostrophic
potential vorticity concept has been used to describe the
interaction between quasigeostrophic potential vorticity
fluctuations in the interior of a flow on the one hand and
surface potential temperature fluctuations and/or topo-
graphic slopes on the other hand, for example, in unsta-
ble baroclinic waves [see Hoskins et al. (1985) and Hall-
berg and Rhines (2000) for reviews]. Here we present a
similar generalization of the potential vorticity concept
that allows for the inclusion of boundary effects in the
potential vorticity dynamics of arbitrary non-geostrophic
flows.

As in quasigeostrophic flows, the inhomogeneous
boundary condition for potential vorticity dynamics of
arbitrary flows can be replaced by a homogeneous
boundary condition if the simplification of the boundary
condition is compensated by a generalization of the po-
tential vorticity concept to a sum of the conventional in-
terior potential vorticity and a singular surface potential
vorticity. We derive functional forms of the generalized
potential vorticity and of its conservation law and discuss
non-geostrophic effects described by the generalized po-
tential vorticity conservation law. In order to illustrate
how the generalized potential vorticity concept can be
used to describe flows for which the quasigeostrophic
approximation is inadequate, we demonstrate that this
concept can form a basis of theories of lee vortex for-
mation in mesoscale flows past a mountain and of the
planetary-scale mean meridional mass flux along isen-
tropes.

Sections 2-4 set up the formal framework of gener-
alized potential vorticity dynamics. Section 2 casts the
momentum equation with the help of the thermodynamic
equation in the form of field equations in which the po-
tential vorticity and the potential vorticity flux appear
as sources of flow fields in the same way in which an
electric charge and an electric current appear as sources
of fields in electrodynamics. These field equations are
the point of departure for the analysis of boundary ef-
fects in potential vorticity dynamics. Section 3 derives,
by means of techniques from electrodynamics, the func-
tional forms of the generalized potential vorticity and
of the generalized potential vorticity flux that replace
the conventional interior potential vorticity and the in-
terior potential vorticity flux when the inhomogeneous
boundary condition for potential vorticity dynamics is
replaced by a homogeneous boundary condition. For the
generalized potential vorticity, a conservation law holds
that reduces, in the quasigeostrophic limit, to the con-

servation law for Bretherton’s (1966) generalized quasi-
geostrophic potential vorticity. In section 4, the conser-
vation law for the generalized potential vorticity, derived
in coordinate-independent form in section 3, is expanded
in isentropic coordinates.

Sections 5 and 6 show how the generalized potential
vorticity concept can be used to analyze boundary effects
in non-geostrophic mesoscale flows and in the planetary-
scale mean meridional circulation. Section 5 discusses
the baroclinic induction of generalized potential vorticity
at boundaries, a non-geostrophic effect described by the
conservation law for generalized potential vorticity. An
analysis of a simulated Boussinesq flow demonstrates
that the formation of a wake with lee vortices in a flow
past a mountain that has no adjacent frictional boundary
layer can be described in terms of generalized potential
vorticity dynamics and the baroclinic induction of gen-
eralized potential vorticity on the mountain surface. A
wake with lee vortices can form by separation of a gen-
eralized potential vorticity sheet from the mountain sur-
face, similar to the separation of a friction-induced vor-
ticity sheet from an obstacle, except that the generalized
potential vorticity sheet can be induced by baroclinicity
at the surface. Section 6 discusses the mean budget of
generalized potential vorticity in isentropic coordinates.
A rigid boundary at which the surface potential tempera-
ture fluctuates is a moving boundary in isentropic coordi-
nates, making the entropic flow domain time-dependent.
Replacing the conventional potential vorticity concept
and the inhomogeneous boundary condition by the gen-
eralized potential vorticity concept and a homogeneous
boundary condition (of constant potential temperature)
allows one to consider a mean potential vorticity budget
in a time-independent entropic flow domain. The time-
independent entropic flow domain includes the surface
layer of isentropes that sometimes intersect the surface.
From the mean budget of generalized potential vorticity
in the surface layer and in the overlying interior atmo-
sphere, we deduce a balance condition that relates the ex-
tratropical mean meridional mass flux along isentropes
to eddy fluxes of interior potential vorticity and of sur-
face potential temperature. Since the mean meridional
mass flux along isentropes, in concert with radiative pro-
cesses, sets the thermal stratification of the atmosphere,
the generalized potential vorticity concept and the bal-
ance condition between the mean meridional mass flux
and eddy fluxes can form a basis of theories of the extra-
tropical thermal stratification.

Section 7 summarizes the conclusions. The appendix
lists the notation and symbols used in this paper.

The analyses presume an ideal-gas atmosphere with
the planet’s surface as the only dynamically relevant
boundary. However, the concepts and mathematical
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techniques presented are easily adaptable — for exam-
ple, to ocean flows with lateral boundaries and with a
more complex thermodynamic equation of state, irre-
spective of the fact that the more complex thermody-
namic equation of state of seawater implies that potential
vorticity is not necessarily materially conserved in adia-
batic and frictionless ocean flows (cf. McDougall 1988).

2. Potential vorticity and potential vorticity flux as
sources of flow fields

a. Field equations

The potential vorticity is the pseudoscalar function

p_ w, - VO 1)

p

of absolute vorticity w,, potential temperature 6, and
density p. The absolute vorticity is the curl w, =
V x u, of the three-dimensional absolute velocity u, =
u+Q x r, or the sum w, = w, + 20 of the relative vor-
ticity w, = Vx u and the vorticity Vx (2 x r) = 2Q
of a planetary rotation with constant angular velocity €2.
The potential vorticity P is a conserved quantity with a
conservation law of the flux form

Ou(pP) + V-(pJ) =0, )
with a potential vorticity flux*
J=uP - p'Quwa+p ' VO xF (3)

in which Q = D@/Dt is the diabatic heating rate and
F a frictional force per unit mass (Haynes and Mclintyre
1987). Diabatic heating @ and frictional forces F con-
tribute to the potential vorticity flux J and redistribute
potential vorticity within a flow, but in the interior of
the flow, they do not create or destroy potential vorticity
(Haynes and Mclntyre 1987, 1990).

Since the divergence of the absolute vorticity van-
ishes, V-w, = 0, the product pP = w, - V8 of den-
sity and potential vorticity is the divergence pP = V-D
of a vector field D. The density and potential vorticity
determine the vector field D up to a non-divergent com-
ponent. For example, one might take as the vector field
D the product D = 6w, of potential temperature and
absolute vorticity, or the cross product D = u, x V8
of absolute velocity and potential temperature gradient.
The difference between these two choices for D is the

1This potential vorticity flux J differs from the quantity pJ that
Haynes and Mclintyre (1987) call potential vorticity flux by a density
factor p. We refer to the quantity pJ as the potential vorticity flux
density. — For a uniqueness property of the potential vorticity flux
(3), see Bretherton and Schér (1993).

non-divergent vector field V x(6u,). For both choices
for D, the product pP is the divergence, and hence the
source, of D.

That the product pP is both a conserved quantity and
the divergence of a vector field can be expressed through
field equations that make some properties of potential
vorticity manifest and that will be convenient in analyz-
ing the role of boundaries in potential vorticity dynam-
ics. Upon substitution of the divergence pP = V-D,
the conservation law (2) for potential vorticity becomes
V- (8 D+pJ) = 0. It follows that the potential vorticity
flux density pJ has the form

pJ = —8,D + Vx H,

where H is the vector potential of the sum 9;D+pJ. The
facts that pP is both a conserved quantity and the diver-
gence of a vector field D can thus be expressed through
the first two Maxwell equations,

V.D = pP, (4a)
VxH-8,D = pJ. (4b)

The quantity pP corresponds to the charge density in
electrodynamics, the field D to the electric displacement
field, the field H to the magnetic field, and the potential
vorticity flux density pJ to the current density. We re-
fer to the quantity pP as the potential vorticity density.?
In the Maxwell equations (4), the potential vorticity P
and the potential vorticity flux J appear as sources of the
fields D and H, just as in electrodynamics charges and
currents appear as sources of the electric displacement
field and of the magnetic field. The conservation law (2)
for potential vorticity follows from the Maxwell equa-
tions by adding the time derivative of the first equation
(4a) to the divergence of the second equation (4b).

b. Gauge invariance

The potential vorticity P, the potential vorticity flux J,
and the density p do not determine the fields D and H
uniquely. The Maxwell equations (4) are invariant under
gauge transformations of the form

D+«D+VxA

®)
HH+gA+ VY

where A is a vector field and +) a scalar field. Given a
potential vorticity P, a potential vorticity flux J, and a
density p, the fields D and H are only determined up to
such gauge transformations.

2We prefer the term “potential vorticity density” to Haynes and
Mclintyre’s (1990) term “potential vorticity substance.” The word sub-
stance connotes an independence of other quantities and a subsistence
in itself that are not characteristic of the potential vorticity density pP.
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The freedom in the definition of the fields D and H
can be exploited to find gauges of the fields D and H that
are amenable to physical interpretation or are convenient
in specific contexts.

c. Aphysically interpretable gauge
With the choice

D =u, x V6, (6)

the potential vorticity density V-D = pP is propor-
tional to the divergence along isentropes of the absolute
angular momentum per unit mass. So the potential vor-
ticity can be interpreted as a source of absolute angular
momentum of the flow along isentropes.

A field H for this choice for D can be found from the
Maxwell equation (4b) by expanding the time derivative
0D = Oyus x V41, x V(9,:0) and by substituting for
the velocity derivative 9;u, = 0;u from the momentum
equation

1 1
8tu+wa><u=—;Vp—§V||u||2—V<I>+F

and for the potential temperature derivative 9;6 from the
thermodynamic equation

00 +u-VH=Q. (7

Using the differential dh = p~ 1 dp+T ds of the specific
enthalpy A = ¢, T and the relation V3§ = ¢, Vlog§ be-
tween gradients of specific entropy § and gradients of po-
tential temperature 8, one can cast the momentum equa-
tion in the form (cf. Batchelor 1967, chapter 3.5; Schér
1993)

Ou+wa xu=c,TVlogd —VB+F (8)
with Bernoulli function
1
B = §||u||2+cpT+<I>. 9)
Taking the cross product of the momentum equation (8)
and the potential temperature gradient V4 and using the
vector identitiesa x (b x ¢) = b(a-c) — c(a-b) and
Vx(pa) = Vip x a+ 1 V x a (for vector fields a, b,
¢, and a scalar field +) leads to the Maxwell equation
8tD = —pJ + VX H
with potential vorticity flux (3) and field

H=-BVl— (8,0)u,. (10)

The explicit time derivative 0, in this expression for the
field H could be expanded by substitution from the ther-
modynamic equation (7); however, with the explicit time
derivative 9;0, it is evident that the second term in the
expression for the field H does not appear in a represen-
tation of the field in isentropic coordinates. In isentropic
coordinates, the field H is proportional to the Bernoulli
function. Since the Bernoulli function is a measure of
the specific energy of the moving fluid, the potential vor-
ticity flux can be interpreted as a source (or, because of
the minus sign, as a sink) of energy of the flow along
isentropes.

In this gauge, then, the potential vorticity P and the
potential vorticity flux J appear as sources of orthog-
onal fields D and H that indicate the absolute angular
momentum and the energy of the flow along isentropes.
With the potential vorticity flux J understood as source
of a field H that indicates the energy of the flow along
isentropes, it is not as surprising as it might seem that the
non-conservative force F and the diabatic heating rate
contribute to the potential vorticity flux J.

In a steady state, the Maxwell equation (4b) reduces
to pJ = Vx H, which becomes, in this gauge, pJ =
—VxBVH =Vl x VB. That is, as noted by Schar
(1993), the potential vorticity flux is directed along
lines of intersection between surfaces of constant po-
tential temperature 8 (isentropes) and surfaces of con-
stant Bernoulli function B. The Bernoulli function B is
the streamfunction of the potential vorticity flux J along
isentropes. Some practical implications of this gener-
alization of Bernoulli’s theorem are discussed by Schér
(1993), Schar and Durran (1997), and, in an oceanic con-
text, by Marshall et al. (2001).

d. A gauge for the analysis of boundary effects

For the analysis of boundary conditions in section 3, the
choice

D = fw, (11)

is convenient. A field H for this choice for D can be
found, as above, from the Maxwell equation (4b) by ex-
panding the time derivative 9;D = (0;6)wa + 0(0;wa)
and by substituting for the potential temperature deriva-
tive 9,0 from the thermodynamic equation (7) and for
the vorticity derivative dywa = O;w, from the vorticity
equation

Owr = VX (u X wa+¢,TViogd +F)  (12)

belonging to the momentum equation (8). Similar alge-
bra to the above leads to the potential vorticity flux (3)
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and to the field®
H=ux0ws+c,TVO+0OF. (13)

This functional form of the field H does not seem to have
a simple physical interpretation.

Irrespective of the gauge of the fields D and H, the
Maxwell equations (4) are a way of arranging the mo-
mentum equation with the help of the thermodynamic
equation such that the existence of a conservation law (2)
for potential vorticity is immediately evident. Express-
ing momentum conservation and potential vorticity con-
servation through the Maxwell equations makes it pos-
sible to use techniques from electrodynamics to analyze
the dynamical role of boundaries such as the interface
between atmosphere and surface.

3. Generalized potential vorticity in coordinate-
independent form

a. Boundary conditions and boundary sources

Since the potential temperature can fluctuate at the sur-
face, the boundary conditions for the fields D and H
in the Maxwell equations (4) are generally inhomoge-
neous. These inhomogeneous boundary conditions at the
surface, or “immediately above” it, can be replaced by
homogeneous boundary conditions “inside” the surface
if the simplification of the boundary conditions is com-
pensated by inclusion of suitable boundary sources in the
Maxwell equations (see, e.g., Morse and Feshbach 1953,
chapter 7). Since the potential vorticity P and the poten-
tial vorticity flux J are sources in the Maxwell equations,
the boundary sources can be viewed as boundary con-
tributions to the potential vorticity and to the potential
vorticity flux.

For the fields D and H in the gauge given by Egs. (11)
and (13), we specify the homogeneous boundary con-
ditions D, = 0 and H; = 0 inside the surface. The
subscript b denotes quantities inside the surface, and the
subscript s will denote quantities immediately above the
surface. Taking the fields D, and H, to be zero inside
the surface can be viewed as a consequence of taking
the potential temperature 6, and with it, for consistency
with the thermodynamic equation (7) and momentum
equation (8), all other flow fields to be zero inside the
surface. The homogeneous boundary conditions for the

SAlternatively, the frictional term in the potential vorticity flux J
could have been written as —p—10 W x F, in which case the field H
would not contain a frictional term. However, an advantage of the
functional forms (3) and (13) of the potential vorticity flux J and field
H is that the frictional term p—! W8 x F in the potential vorticity flux
has no cross-isentropic component and is therefore easier to expand in
isentropic coordinates than a frictional term of the form —p~1 V x F
(cf. section 4).

fields D and H must be compensated by boundary con-
tributions to the potential vorticity and to the potential
vorticity flux.

b. Boundary contributions to the potential vorticity

At the interface between two media, the normal compo-
nent of the electric displacement field has a discontinu-
ity proportional to a surface charge density at the inter-
face (Jackson 1975, section 1.5). Analogously, the nor-
mal component of the field D has, at the surface, a dis-
continuity proportional to a surface density of potential
vorticity.

Given the fields Dy, inside the surface and D, imme-
diately above the surface with upward normal n, one
can compute the surface potential vorticity that is re-
quired to force the normal component of the field D from
n-D = n-Dy = 0 inside the surfaceton-D = n-D im-
mediately above the surface. Integrating the divergence
equation (4a) over an infinitesimally small volume en-
closing the surface and using Gauss’s theorem to convert
the volume integral of the divergence V- D into a sur-
face integral, one finds that the homogeneous boundary
conditionn - D = n - Dy = 0 must be compensated by
including on the right-hand side of the divergence equa-
tion (4a) a source with a surface density of potential vor-
ticity equal to n - (D; — Dp) = n - D, (see, e.g., Jack-
son 1975, section 1.5; Morse and Feshbach 1953, chap-
ter 7). One can think of this surface density of potential
vorticity as the across-surface integral of the potential
vorticity density pS that belongs to the singular surface
potential vorticity

n-Dg
p

The surface potential vorticity S is concentrated in a
delta-function potential vorticity sheet on the surface at
z = zs(x,y). The choice D = 6w, for the field D leads
to the surface potential vorticity

S =

0(z — zg).

Wa- N

S =

06(z — z5)- (14)

The divergence equation (4a) with inhomogeneous
boundary condition n - D = n - D, and potential vor-
ticity P is equivalent to a divergence equation (4a) with
homogeneous boundary conditionn-D = n-Dy =0
and generalized potential vorticity

P,=P+38. (15)

Replacing the inhomogeneous boundary condition for
the field D by a homogeneous boundary condition is
compensated by putting an idealized potential vorticity
sheet with surface potential vorticity S on the surface.
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c. Boundary contributions to the potential vorticity flux

At the interface between two media, the tangential com-
ponent of the magnetic field has a discontinuity propor-
tional to a current density at the interface (Jackson 1975,
section 1.5). Analogously, the tangential component of
the field H has, at the surface, a discontinuity propor-
tional to a surface density of potential vorticity flux.

The surface flux of potential vorticity that is required
to force the tangential component n x H of the field
H fromn x H = n x H, = 0 inside the surface
ton x H = n x H, immediately above the surface
can be found by integrating the second Maxwell equa-
tion Vx H — 9,D = pJ over an area perpendicular to
and including the surface. In the limit of an infinitesi-
mally small area, the area integral of the time derivative
0, D vanishes because 9;D is finite at the surface. Us-
ing Stokes’s theorem to convert the area integral of the
curl Vx H into a loop integral and choosing the area of
integration such that those segments of the loop integral
that are perpendicular to the surface are infinitesimally
small, one finds that the homogeneous boundary condi-
tion n x H = n x H = 0 must be compensated by in-
cluding on the right-hand side of the Maxwell equation
(4b) a source with a surface density of potential vorticity
fluxequal tonx (H;—H;) = nxH; (see Jackson 1975,
section 1.5). Analogous to the line of reasoning that led
to the surface potential vorticity, one can think of the
surface density of potential vorticity flux as the across-
surface integral of the potential vorticity flux density pK
that belongs to the singular potential vorticity flux

n x H,
p

K= 0(z — z5)-

This surface potential vorticity flux is concentrated on
the surface and has only components tangential to the
surface. Substituting for the field H from the above-
derived expression (13) and using the fact that, at the
surface, the normal component n - u of the velocity u
vanishes, one obtains the surface potential vorticity flux

K=uS+K;+Kp (16a)
with baroclinic component
Ky =p'c,T(nx V) (2 — z,) (16b)
and frictional component
Kr=p10(nxF)é(z— 2,). (16¢)

The surface potential vorticity flux K consists of an ad-
vective component uS, of a baroclinic component K,

that is directed along isentropes lying in the surface, and
of a frictional component K. The baroclinic compo-
nent K; has its origin in the contribution of the baro-
clinicity vector p=2 Vp x Vp to the vector potential H.
With a no-slip boundary condition at the surface, the ve-
locity u along the surface vanishes, and the surface po-
tential vorticity flux K consists only of the non-advective
components K; and K. The advective component of
the surface potential vorticity flux K might, neverthe-
less, be of practical relevance. For example, numerical
atmosphere models typically use not a no-slip boundary
condition, but a drag-law boundary condition, so the ad-
vective component of the surface potential vorticity flux
might not be negligible in a generalized potential vortic-
ity budget of such a model. The advective component of
the surface potential vorticity flux is proportional to the
surface heat flux, and horizontal heat fluxes are signifi-
cant down to the lowest levels of typical general circu-
lation models and down to the lowest atmospheric levels
for which observational data are available [cf. Held and
Schneider (1999) and section 6e].

The Maxwell equation (4b) with inhomogeneous
boundary condition n x H = n x H, and potential
vorticity flux J is equivalent to a Maxwell equation
(4b) with homogeneous boundary condition n x H =
n x H, = 0 and generalized potential vorticity flux

Replacing the inhomogeneous boundary condition for
the field H by a homogeneous boundary condition is
compensated by the added flux K in the idealized po-
tential vorticity sheet on the surface.

d. Conservation of generalized potential vorticity

The generalized potential vorticity P, and the general-
ized potential vorticity flux J, contain the boundary con-
tributions to the potential vorticity budget. The original
Maxwell equations (4) with inhomogeneous boundary
conditions at the surface and with the interior potential
vorticity P and the interior potential vorticity flux J as
sources are equivalent to Maxwell equations with homo-
geneous boundary conditions inside the surface and with
the generalized potential vorticity P, and the general-
ized potential vorticity flux J, as sources. Adding the
time derivative of the first Maxwell equation (4a) to the
divergence of the second Maxwell equation (4b) yields
the conservation law

O (pPy) + V-(pJg) =0 (18)

4If the frictional term in the interior potential vorticity flux J would
have been written as —p~10 V x F, the field H and, with it, the sur-
face potential vorticity flux K would not contain frictional components
(cf. footnote 3).
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for the generalized potential vorticity P,.

The conservation law (18) for the generalized poten-
tial vorticity is similar to the conservation law (2) for
the interior potential vorticity. In contrast to the inte-
rior potential vorticity, however, the generalized poten-
tial vorticity is not, in general, materially conserved in
adiabatic and frictionless flows. The baroclinic compo-
nent (16b) of the surface potential vorticity flux can re-
distribute generalized potential vorticity non-advectively
along the surface.

Nevertheless, the integral of the generalized potential
vorticity density pP, over the volume of the atmosphere
(or over a suitable control volume) is conserved. In-
tegrating the conservation law (18) over the volume V'
of the atmosphere and using Gauss’s theorem with the
boundary conditionn - (pJ ;) = 0 inside the surface and
with the assumption that the generalized potential vortic-
ity flux density pJ, vanish at the top of the atmosphere,
one obtains

8t/ pPydx =0,
v

or, equivalently,

6,5/ deX:—at/ deX
\%4 14

Any increase in the volume-integrated interior potential
vorticity density pP is compensated by a decrease in the
volume-integrated surface potential vorticity density pS,
and vice versa. The conservation law (2) for the interior
potential vorticity implies that the volume-integrated in-
terior potential vorticity density pP can change only if
the integral of the normal component

n-(pJ)=—-Qn-ws)+n-(VexF)

of the interior potential vorticity flux density over the
surface area A is nonzero,

6,5/ deX
\4

:—/A[Q(n-wa)—n-(VQXF)]dA
:—6t/ pSdx. (19)

Since the normal component of the velocity vanishes at
the surface, only diabatic and frictional processes at the
surface can effect changes in the volume-integrated in-
terior potential vorticity density. Given that changes in
volume-integrated interior potential vorticity density are
compensated by opposing changes in volume-integrated
surface potential vorticity density, diabatic and frictional

processes at the surface can be viewed as converting
surface potential vorticity into interior potential vortic-
ity, and vice versa. The surface integral of the nor-
mal component n - (pJ,) = n - (pJ) of the poten-
tial vorticity flux density indicates the conversion rate of
volume-integrated surface potential vorticity density into
volume-integrated interior potential vorticity density.

e. Alternative generalized potential vorticity function-
als

The functional forms of the generalized potential vortic-
ity P, = P+ S and of the generalized potential vorticity
flux J, = J + K are not unique because the functional
forms of the surface potential vorticity S and of the sur-
face potential vorticity flux K depend on the gauge of
the fields D and H.

We chose the gauge given by Egs. (11) and (13) be-
cause, in this gauge, the functional forms of the surface
potential vorticity (14) and of the surface potential vor-
ticity flux (16) resemble the functional forms of the in-
terior potential vorticity (1) and of the interior potential
vorticity flux (3). For example, the surface potential vor-
ticity (14) is proportional to the absolute vorticity com-
ponent w, - n normal to the surface, while the interior
potential vorticity (1) is proportional to the absolute vor-
ticity component w, - V& normal to isentropes. And like
the interior potential vorticity flux (3), the surface poten-
tial vorticity flux (16) contains an advective component,
which legitimizes its interpretation as a flux.

Alternatively, however, we could have chosen a gauge
in which, for example, a field D' = 8'w, is defined with
the potential temperature fluctuation 8’ = 6 — 6, about
a constant reference potential temperature 6y in place
of the absolute potential temperature 6. Such a gauge
suggests itself when a reference potential temperature is
given, such as is the case in Boussinesq flows (see be-
low). One obtains the alternative gauge D' and H' from
the gauge given by Egs. (11) and (13) by a transforma-
tion of the form (5) with A = —6yu,. Replacing the
inhomogeneous boundary conditions n - D’ = n - D/,
and n x H' = n x H/, by homogeneous boundary con-
ditionsn-D'=n-D; =0andnx H' =nxH, =0
in this alternative gauge results in a surface potential vor-
ticity S’ = 6'/6 S and a surface potential vorticity flux
K' = ¢'/60 K. All of the above statements about the con-
servation of generalized potential vorticity and about the
structure of the surface potential vorticity and the sur-
face potential vorticity flux remain valid if the surface
potential vorticity S and the surface potential vorticity
flux K are replaced by the alternative functionals S’ and
K'. This arbitrariness in the definition of the surface po-
tential vorticity and of the surface potential vorticity flux
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means that their absolute values by themselves carry no
dynamical significance.

Other gauges are possible and may be convenient in
some contexts (see section 6e for an example). How-
ever, the conservation law (18) for the generalized poten-
tial vorticity does not depend on the gauge chosen. The
gauge invariance of the Maxwell equations (4) translates
into gauge invariance of the conservation law (18) for
generalized potential vorticity.

In the derivations so far, neither the continuity equa-
tion nor the hydrostatic approximation has been used.
Conservation of generalized potential vorticity holds
quite generally for compressible and non-hydrostatic
flows. For adiabatic and frictionless Boussinesq flows
and for quasigeostrophic flows over a flat surface, the ex-
pressions for the surface potential vorticity and the sur-
face potential vorticity flux simplify.

f. Adiabatic and frictionless Boussinesq flows

The surface potential vorticity S and the surface poten-
tial vorticity flux K for adiabatic and frictionless Boussi-
nesq flows can be derived in a similar manner as the
above expressions for the surface potential vorticity (14)
and the surface potential vorticity flux (16). In the
Boussinesq approximation, the density p in the potential
vorticity (1) is taken to be equal to a constant reference
density po, and the potential vorticity is defined with the
potential temperature fluctuation 8’ = 6 — 6, about a
constant reference potential temperature 6, in place of
the absolute potential temperature 6,

. !
P = ﬂ (20)
Po
Correspondingly, the surface potential vorticity becomes
§=Y2 My 2. (1)
Po

The surface potential vorticity flux for adiabatic and
frictionless flows consists of the advective component
uS and of a baroclinic component K;. Which form the
baroclinic component K, of the surface potential vortic-
ity flux takes for Boussinesq flows can be seen by go-
ing back to the derivation of the surface potential vortic-
ity flux in the general case. The baroclinic component
has its origin in the baroclinicity vector — Vx p~! Vp.
The baroclinic component resulted from writing the term
—6(V x p~!1 Vp) in the expansion of the time deriva-
tive 9;D as the curl of the vector field ¢,T' V§, making
this field ¢, 7" V@ part of the field H [Eq. (13)], and tak-
ing the tangential component n x H to determine the
surface potential vorticity flux. In the Boussinesq ap-

proximation, the baroclinicity vector is V x ng)' k, with

vertical unit vector k, and the term —0(V x p~! Vp) in

the general case becomes ¢’ (V x QTH' k) = Vx 9290'2 k.

Consequently, the baroclinic compoonent of the surface
potential vorticity flux becomes

1 ¢6”
p = —

= (n x k) (2 — zs). (22)

The baroclinic component of the surface potential vor-
ticity flux is quadratic in potential temperature fluctu-
ations @' and hence would not appear in a linearized
Boussinesq system. Instead of being directed along isen-
tropes lying in the surface, as the baroclinic component
(16b) in the general case, the baroclinic component of
the Boussinesq surface potential vorticity flux is directed
along lines of constant surface elevation. At a flat surface
(n = k), the baroclinic component vanishes, and the sur-
face potential vorticity flux reduces to the advective flux
K = uS. Since the Boussinesq approximation is often
an adequate approximation for atmospheric flows near
the surface — say, within the planetary boundary layer
— the vanishing of the baroclinic component K of the
surface potential vorticity flux for Boussinesq flows over
a flat surface suggests that this component is only im-
portant if topography exerts a significant influence on
the flow. The baroclinic component K; of the surface
potential vorticity flux and topographic effects will be
discussed in more detail in section 5.

g. Quasigeostrophic Boussinesq flows over flat surface

Taking the quasigeostrophic limit of the Maxwell equa-
tions for Boussinesq flows, one finds that, for quasi-
geostrophic Boussinesq flows over a flat surface (z; =
0), the normal component w, - n of the absolute vorticity
in the surface potential vorticity (21) must be approxi-
mated by a constant reference value fo of the Coriolis
parameter f, so that the surface potential vorticity be-
comes

S = Jo 0'6(2).
Po
This surface potential vorticity corresponds to that
boundary contribution to the quasigeostrophic potential
vorticity with which Bretherton (1966) replaced an inho-
mogeneous thermodynamic boundary condition.

The baroclinic component (22) of the surface poten-
tial vorticity flux vanishes for Boussinesq flows over a
flat surface, and, for adiabatic and frictionless quasi-
geostrophic flows, the surface potential vorticity flux re-
duces to the advective flux

Jfo

K =u,S = —uyb'i(z),
Po
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where the advecting velocity u, is the geostrophic ve-
locity. For quasigeostrophic Boussinesq flows over a
flat surface, the surface potential vorticity flux is propor-
tional to the geostrophic surface heat flux. This surface
potential vorticity flux corresponds to the boundary con-
tribution to the quasigeostrophic potential vorticity flux
discussed by Bretherton (1966). Bretherton’s insight
that “any flow with potential temperature variations over
a horizontal rigid plane boundary may be considered
equivalent to a flow without such variations, but with
a concentration of potential vorticity very close to the
boundary” (p. 329) generalizes from quasigeostrophic
flows to arbitrary atmospheric flows: any flow with po-
tential temperature variations over a rigid surface may be
considered equivalent to a flow without such variations,
but with a concentrated surface potential vorticity (14)
and a concentrated surface potential vorticity flux (16)
immediately above the surface.

4. Generalized potential vorticity in isentropic co-
ordinates

We assume that for each time ¢ and at each point in
the (z,y)-plane, the potential temperature 6 is a strictly
monotonic function of height z, so that the instanta-
neous thermal stratification is everywhere statically sta-
ble (0.6 > 0) and the potential temperature can be used
as the vertical coordinate in an isentropic coordinate sys-
tem. We adopt the hydrostatic approximation and carry
out the analysis within the framework of the primitive
equations.

We will determine the generalized potential vorticity
and the components of the generalized potential vor-
ticity flux in isentropic coordinates by expanding the
coordinate-independent expressions of sections 2 and 3
in isentropic coordinates. Expressions for the interior
potential vorticity (1) and for the interior potential vor-
ticity flux (3) in isentropic coordinates are well-known;
they are usually derived from the equations of motion
in isentropic coordinates [see, e.g., Salmon (1998, chap-
ter 2.18) or Andrews et al. (1987, chapter 3.8)]. The
technique of expanding the coordinate-independent ex-
pressions in isentropic coordinates has the advantage of
being applicable to the singular surface potential vortic-
ity and its flux, without it being necessary to go back to
the equations of motion to deduce the representation of
these quantities in isentropic coordinates.

Isentropic coordinates are non-orthogonal, so con-
travariant and covariant vector components must be dis-
tinguished (see, e.g., Arfken 1985, chapter 3). We use
the notation (a®, a¥, a’), for the contravariant com-
ponents of a vector a in isentropic coordinates. The
contravariant horizontal components a* = a - i and

a¥ = a - j are equal to the local Cartesian components
of the vector a, the local Cartesian unit vectors i and j
being directed eastward and northward.®> The contravari-
ant cross-isentropic componenta? = a- V@ is the scalar
product of the vector a and the potential temperature gra-
dient V4.

a. Generalized potential vorticity

The generalized potential vorticity takes a particularly
simple form in isentropic coordinates. In the primitive
equations, the planetary vorticity 2 is approximated
by its local vertical component fk, and in the hydro-
static approximation, horizontal derivatives of the ver-
tical velocity in the relative vorticity w, = Vxu are
neglected compared with vertical derivatives of the hor-
izontal velocity. The absolute vorticity hence becomes
the sum w, = fk + V x v of the planetary vorticity fk
and the relative vorticity V x v of the horizontal flow
v = (u,v,0). The relative vorticity of the horizontal
flow can be represented in isentropic coordinates as

Vxv=h! (—6911, Opu, Ozv — ayu)a, (23)

where the horizontal derivatives 9, and 9, are to be un-
derstood as derivatives along isentropes, and the scale
factor

h = 0y2z, (24)

an inverse measure of static stability, is the Jacobian
h = 9(z,y,2)/0(x,y,0) of the transformation from
Cartesian coordinates to isentropic coordinates. By the
representation (23) of the relative vorticity in isentropic
coordinates, the interior potential vorticity density pP =
wa - V8 — the contravariant cross-isentropic component
of the absolute vorticity — is wa - V8 = A= (f + (),
where ¢y = 0,v — Oyu is the relative vorticity of the
horizontal flow v along isentropes. In the hydrostatic
approximation, the density is p = —g~18,p, and the
product of density p and scale factor h is the isentropic
density

po = ph = —g~ " dyp.

Combining the density p and the scale factor A in the
potential vorticity density wa-V8 = h=1(f + () yields
the well-known interior potential vorticity

P=TF %504, (25)
Po

5As horizontal coordinates, we use local Cartesian coordinates in
what follows. The transformation of the horizontal coordinates from
local Cartesian coordinates to spherical coordinates is straightforward.
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The step function

1 ife >0,

HO—-0,) = .
( ) {0 ifo <0,

indicates that the interior potential vorticity P con-
tributes to the generalized potential vorticity P, only
above the surface, on isentropes with potential temper-
ature @ greater than the surface potential temperature
0s(z,y,1).

An isentropic-coordinate representation of the bound-
ary contribution S to the generalized potential vorticity
P, = P+ S can be found in a similar way. Under the as-
sumption of static stability, the delta-function 6(z — z)
transforms according to d(z — z5) = h=14(0 — 65),
where the scale factor h is to be evaluated immedi-
ately above the surface. Combining the density p in the
surface potential vorticity (14) with the scale factor A
from the transformation of the delta-function yields the
isentropic-coordinate expression

Wa- N
Po

for the surface potential vorticity.

Within the approximations of the primitive equations
and under the assumption of static stability, the gener-
alized potential vorticity (15) is the sum of the interior
potential vorticity (25) and the surface potential vortic-
ity (26) in isentropic coordinates.

S =

95(6—0,) (26)

b. Generalized potential vorticity flux

The generalized potential vorticity flux in isentropic co-
ordinates can likewise be found by expanding the vectors
and differential operators of the coordinate-independent
interior potential vorticity flux (3) and surface potential
vorticity flux (16). The isentropic-coordinate represen-
tation of the term p~'Qwy, in the interior potential vor-
ticity flux (3) follows by expanding the relative vorticity
V x v with the help of the expression (23); the frictional
force per unit mass F is assumed to have only horizontal
components F* and F'Y; and products of the scale fac-
tor h and the density p are combined to the isentropic
density pg. The cross-isentropic components of the ad-
vective flux uP and of the diabatic term p~! Qw, cancel
because, by the thermodynamic equation (7), the con-
travariant cross-isentropic component u - V8 of the ve-
locity is the heating rate @, and the contravariant cross-
isentropic component w, - V8 of the absolute vorticity is
the potential vorticity density pP. Combining all terms,
one finds the well-known interior potential vorticity flux
(cf. Haynes and Mclintyre 1987)

J=(u,v, 0P +Jg+Ir (27a)

with diabatic flux

Jq = ;" Q (Bpv, —Opu, 0)sH(0 —0,)  (27h)
and frictional flux
Jp=p;' (=FY, F*, 0),H(0 - 0,). (27¢)

Even in the presence of diabatic heating and friction, the
interior potential vorticity flux has no cross-isentropic
component.  Therefore, the impermeability theorem
holds: interior potential vorticity can only be redis-
tributed along isentropes but cannot be transferred across
isentropes (Haynes and Mcintyre 1987).

In order to represent the surface potential vorticity flux
(16) in isentropic coordinates, we use for the unit normal
vector at the surface z = z,(z,y) the explicit represen-
tation

n=upV(z—z)=pk-Vz,)

with normalization factor

p=(1+Vzl?)

The hydrostatic approximation is only justifiable if the
horizontal scale of the topography zs(x,y) is much
greater than the vertical scale, such that x ~ 1. For con-
sistency with the hydrostatic approximation, we should
set the normalization factor u equal to one. But with the
understanding that the hydrostatic approximation would
be inappropriate if the normalization factor p were sig-
nificantly less than one, we retain the normalization fac-
tor w in the following equations as a marker of where
topographic effects can play a role.

With the explicit representation of the normal vec-
tor n, the surface potential vorticity flux can be ex-
panded in isentropic coordinates term-by-term. The
delta-functions in the surface potential vorticity flux are
transformed in the same way as above: §(z — z5) =
h=18(6 — 65). And horizontal derivatives of the poten-
tial temperature # at constant height z are transformed
into horizontal derivatives of the height z at constant po-
tential temperature 8 by means of the relation 9,,6|, =
—h=18,,2|y for z; = x,y. One obtains the surface po-
tential vorticity flux

K= (u, v, QyS+Ky+Kp (28a)
with baroclinic component
E
Ky = E= (-6, 67,0),6506-6,)  (28b)

Po
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and frictional component

Kp = pﬁa(_Fy, F*, F*9Y — FY6%),06( - 6,),
(28c)

where

07 = —h'0,(z— 2,) and 6Y =—h"'0,(z — z,)
(29)

are the derivatives of the surface potential temperature
0,(x,y,t) with respect to 2 and y. In the baroclinic com-
ponent (28b), the specific enthalpy ¢,T" has been written
as the product ¢,T" = O of potential temperature 6 and
Exner function E = ¢,(p/po)"*, po being a constant ref-
erence pressure.

Within the approximations of the primitive equations
and under the assumption of static stability, the general-
ized potential vorticity flux (17) is the sum of the interior
potential vorticity flux (27) and the surface potential vor-
ticity flux (28) in isentropic coordinates. Since both the
advective component (28a) and the frictional component
(28c) of the surface potential vorticity flux have cross-
isentropic components, the impermeability theorem does
not hold for the generalized potential vorticity flux in the
gauge chosen here. The generalized potential vorticity
of the gauge chosen here can be transferred across isen-
tropes by diabatic heating and friction at the surface.

c. Conservation of generalized potential vorticity

The conservation law (18) for the generalized potential
vorticity becomes in isentropic coordinates

34(paPy) + 0z (paJT) + 8y (peJY) + Bo (pa i) =0,
(30)

where (J7, J¥, Jg), are the contravariant components
of the generalized potential vorticity flux J,.°

5The conservation law (30) results from the representation
1
Va= [0 (ha®) + 8y (ha¥) + 0y (ha')]

of the divergence of a vector a = (am, a¥, a")o in isentropic co-
ordinates (cf. Arfken 1985, chapter 3.9). Since the scale factor h
can be viewed as the Jacobian h = 9(z,y,z,t)/0(z,y,0,t) of
the four-dimensional transformation from (z,y, z,t)-coordinates to
(z,y,8,t)-coordinates, and since it is the Jacobian h of the transfor-
mation from Cartesian to isentropic coordinates that appears in the rep-
resentation of the divergence in isentropic coordinates, the explicit time
derivative 9;(pP) can be viewed as being part of a four-dimensional
divergence operator and can, like the space derivatives, be written as
h=18;(hpP) = h~10:(pg P); hence the conservation law (30) in
isentropic coordinates.

5. Baroclinic induction of generalized potential vor-
ticity
In adiabatic and frictionless flows, the surface potential
vorticity flux (28) is the sum K = (u, v, 0)S + K of
the advective component (u, v, 0)¢.S and the baroclinic
component K. The presence of the non-advective baro-
clinic component K; of the surface potential vorticity
flux implies that surface potential vorticity, and through
it generalized potential vorticity, can be induced baro-
clinically.

a. Origin of baroclinic component of surface potential
vorticity flux

The baroclinic component K; of the surface potential
vorticity flux arises because of differences between the
interior potential vorticity (f + (s)/pe and the quantity
(wa - n)/py to which the surface potential vorticity (26)
is proportional. Denoting the relative vorticity compo-
nent perpendicular to the surface by ¢, = wy - n, one
can write (wa -n)/ps = (uf + ¢»)/pe. In the hydro-
static approximation, the normalization factor 4 is equal
to one, so that the interior potential vorticity (f + Cg)/pe
and the quantity (wa-n)/ps = (f+¢s)/pe differ only by
the relative vorticity factors: the interior potential vortic-
ity

P=I"% %06 0,
Po

contains the relative vorticity (y of the flow along isen-
tropes; the surface potential vorticity

_f+6
Po

S 046(6—0,)

contains the relative vorticity {, of the flow along the
surface. Because of this difference in the relative vortic-
ity factors, the surface potential vorticity flux has a non-
advective baroclinic component in adiabatic and friction-
less flows, while the interior potential vorticity flux is
purely advective in such flows.

The conservation law for the interior potential vortic-
ity P is the regular part of the conservation law (30) for
the generalized potential vorticity P, = P + S. The reg-
ular part of the conservation law (30) describes the time
evolution of the isentropic relative vorticity (y. In the ab-
sence of diabatic heating and friction, the interior poten-
tial vorticity flux (27) reduces to an advective flux along
isentropes, so the interior potential vorticity (f + () /pe
is materially conserved and is, in particular, materially
conserved in adiabatic and frictionless flows along isen-
tropes at or immediately above the surface. In contrast,
the conservation law for the surface potential vorticity
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S is the singular part of the conservation law (30) for
the generalized potential vorticity. The singular part of
the conservation law (30) describes the time evolution
of the relative vorticity ¢, of the flow along isentropes
0 = 6s(x,y,t) at the surface. Even in the absence of di-
abatic heating and friction, the surface potential vorticity
flux (28) contains the non-advective baroclinic compo-
nent K, so the quantity (f + ¢»)/pe is not, in general,
materially conserved in adiabatic and frictionless flows
along isentropes at the surface.

The quantity (f + ¢,)/ps is not materially conserved
because baroclinicity at the surface can affect the rela-
tive vorticity ¢, of the surface flow. The contribution
V-(pKjy) of the baroclinic component (16b) to the di-
vergence of the surface potential vorticity flux density is
equal, up to factors that are constant along isentropes at
the surface, to the downward normal component

—n-Vx(c,T Viogh) = V- (ﬂ n x vo)

0
of the baroclinicity vector —Vxp~l!Vp =
Vx¢c,T Vlog§. The component of the baroclin-

icity vector normal to the surface does not generally
vanish but affects the surface potential vorticity S via
the relative vorticity ¢, of the surface flow, giving rise to
the baroclinic component of the flux of surface potential
vorticity along isentropes at the surface. In contrast,
the component of the baroclinicity vector normal to
isentropes vanishes, so the isentropic relative vorticity
(y is not affected by baroclinicity and the flux of interior
potential vorticity is purely advective in adiabatic and
frictionless flows, including flows along isentropes at or
immediately above the surface.

The baroclinic component of the surface potential vor-
ticity flux, then, is due to the difference between the rela-
tive vorticities (4 and ¢,. The baroclinic component K,
of the surface potential vorticity flux represents the ef-
fects of baroclinicity on the relative vorticity ¢, of the
surface flow.

b. Scale analysis for small Rossby number

For hydrostatic flows with small Rossby number, the ra-
tio of the difference {4y — (, between the relative vor-
ticities to the relative vorticities {4 and (, themselves
scales like the ratio Fr® /Ro of squared Froude number
Fr = U/(NH) to Rossby number Ro = U/(fL), where
U is a velocity scale, N the Brunt-Viséla frequency, H
a height scale, and L a length scale. Since the baroclinic
component K; of the surface potential vorticity flux is
due to the difference (4 — (, between the relative vortic-
ities, the baroclinic component K of the surface poten-
tial vorticity flux is of order O(Fr? /Ro) compared with

the advective component (u, v, @Q)e.S. Thatis, for flows
with small Rossby number, only if Fr? > Ro can surface
baroclinicity lead to significant deviations from material
conservation of generalized potential vorticity.

For quasigeostrophic flows on the scale of the Rossby
radius Lr, = NH/f, the Froude number Fr is of the
same order as the Rossby number Ro, and the baroclinic
component K; of the surface potential vorticity flux is
of order O(Ro) compared with the advective compo-
nent (u, v, @)aS. The baroclinic component of the sur-
face potential vorticity flux hence is negligible in quasi-
geostrophic scaling.”

As shown above (section 3f), the baroclinic com-
ponent of the surface potential vorticity flux vanishes
for Boussinesq flows over a flat surface, irrespective of
quasigeostrophic scaling. In quasigeostrophic scaling,
the baroclinic component of the surface potential vortic-
ity flux is negligible, irrespective of topography. Hence,
in large-scale atmospheric flows, the baroclinic compo-
nent of the surface potential vorticity flux will often be
negligible.

c. Example: Wake formation in flows past a mountain

One example of a flow in which non-geostrophic effects
and the baroclinic component of the surface potential
vorticity flux can play a significant role is stratified flow
past a mountain. Smolarkiewicz and Rotunno (1989)
have demonstrated with numerical simulations that, in
stratified flow that is irrotational upstream of an isolated
mountain, a wake with a pair of lee vortices can form
downstream of the mountain even when the boundary
condition at the mountain is a free-slip condition. A
free-slip condition at the surface implies that there can-
not be a frictional boundary layer from which vortic-
ity could be transferred into the wake in the interior of
the flow. In place of frictional processes, baroclinic ef-
fects have been linked to the induction of wake vorticity
in flows past a mountain without a frictional boundary
layer (Smolarkiewicz and Rotunno 1989; Rotunno et al.
1999). But even in the presence of baroclinicity, interior
potential vorticity is materially conserved in adiabatic
and frictionless flows, and so baroclinic effects alone
cannot be responsible for the induction of potential vor-
ticity in a wake. The interior potential vorticity would
have to remain zero throughout adiabatic and friction-
less flows past a mountain if it is zero upstream of the
mountain. Yet, in simulations with weak frictional dis-

“Strictly speaking, it is the divergence V-(pKp) =
Be(pa KE)|o + y(pe K)o that is negligible in quasigeostrophic
scaling. The baroclinic component K; may have a non-divergent
component that is irrelevant for the transfer of surface potential
vorticity.
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Quantity Scale
t L/U
T,Y,2 H=U/N
6 0 =6y/gN*H
P.S | NO/(pL)
J.K UNO®O/(poL)
V-(poK) UNO/L?

TaBLE 1: Scales used for non-dimensionalization of quantities
in Figs. 1 and 2. The fundamental scales used for the non-
dimensionalization are the horizontal scale L of the mountain
and the velocity U and Brunt-Véisdla frequency NN of the flow
far upstream of the mountain.

sipation and diabatic heating, a flow with zero interior
potential vorticity upstream of a mountain without a fric-
tional boundary layer can develop a wake with nonzero
interior potential vorticity downstream of the mountain
(see, e.g., Schér and Durran 1997; Rotunno et al. 1999).
The nonzero interior potential vorticity in the wake im-
plies that dissipative processes, however weak, must be
active somewhere in the flow. The extent to which baro-
clinic effects and dissipative processes play a role in the
formation of a wake at a mountain without a frictional
boundary layer has been the subject of controversy (see,
e.g., Smith 1989; Schér and Durran 1997; Rotunno et al.
1999).

The generalized potential vorticity concept allows for
a scenario of how a wake can form in weakly dissipative
flows past a mountain. Figure 1 shows the time evolu-
tion of the surface potential vorticity S and of the inte-
rior potential vorticity P on two isentropes during the
spin-up of a mountain wake from a potential-flow initial
condition. The figure is based on a simulation by Ro-
tunno et al. (1999) of a Boussinesq flow past an isolated
mountain. In the simulation, the planetary vorticity is
zero, and the Brunt-Vaiséla frequency N, the velocity
u = (U,0,0), and the surface potential temperature 6,
are uniform far upstream of the mountain, so that the in-
terior potential vorticity P, the surface potential vorticity
S, and the generalized potential vorticity P, = P+S are
zero there. The flow impinges along the x-axis upon a
radially symmetric Gaussian mountain at the coordinate
origin. The mountain is of height hys = 1.25H, where
H =U/N is a height scale of the upstream flow, and its
slopes are gentle in that the horizontal scale L = 10H
of the mountain is considerably greater than the moun-
tain height hps. The boundary condition at the moun-
tain is a free-slip condition. The only dissipative pro-
cesses in the simulation are viscous momentum dissi-
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FIGURE 2: Isentropes in the y = 0 symmetry plane at time
t = 14.4. The thin lines represent isentropes (§' = const)
with a contour interval of A" = 0.5. The thick lines represent
the surface and the isentropes 8’ = 0.8 and 8’ = 2.0 on which
the generalized potential vorticity is shown in Fig. 1. Poten-
tial temperature fluctuations 6’ are given in units of the scale
© = 6o/g N?H (cf. Tab. 1), so that a unit potential temper-
ature fluctuation 8 = 1 corresponds to a downward displace-
ment of an isentrope by one height scale H.

pation and thermal diffusion with constant viscosity v,
and constant thermal diffusivity k. = v.. The Reynolds
number UL /v, = 500 is chosen small enough that the
simulated flow remains laminar, yet large enough that the
simulated flow is only weakly dissipative [see Rotunno
et al. (1999, section 4) for a detailed description of the
simulation].

In the simulation, the formation of a wake with
nonzero interior potential vorticity is the result of four
processes: (i) modification of the thermal stratification in
the vicinity of the mountain by gravity waves; (ii) baro-
clinic induction of a surface potential vorticity dipole on
the leeward slope of the mountain; (iii) downslope ad-
vection of the surface potential vorticity dipole and ac-
cumulation of surface potential vorticity in a region of
large along-stream gradients in surface potential temper-
ature; and (iv) dissipative separation of the surface po-
tential vorticity dipole from the surface and advection of
an interior potential vorticity dipole along isentropes that
intersect the surface.

(i) The way in which gravity waves modify the ther-
mal stratification in the vicinity of the mountain is qual-
itatively well described by inviscid linear theory. For a
mountain that is sufficiently high (has 2 H), such as
the mountain in the simulation considered here (hys =
1.25H), inviscid linear theory predicts that, in the lee of
the mountain, isentropes are deflected downward such
that they collapse onto the mountain surface (Smith
1988). On the leeward slope of the mountain, there-
fore, a region of high and relatively uniform surface po-
tential temperature forms, bounded laterally and down-
slope by regions of large gradients in surface potential
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(a) t=1.8
(b) t=7.2
(c)t=14.4
(d)t=14.4
Potential vorticity flux: 1.
Potential vorticity: -1.25 -0.25 0.25 1.25
Flux convergence: -0.075 -0.015 0.015 0.075

FIGURE 1: Generalized potential vorticity in simulated Boussinesq flow past a mountain. The flow impinges along the z-axis
(from the left) upon a radially symmetric mountain at the coordinate origin. Colored contours in panels (a), (b), and (c) indicate
the interior potential vorticity (20) on the isentropes 8’ = 0.8 and 6’ = 2.0 and the surface potential vorticity (21) on the mountain
surface for three different times ¢ after the start of the simulation from a potential-flow initial condition. Colored contours in panel
(d) indicate, projected onto the zy-plane, the convergence — V-(poKjy) of the baroclinic component (22) of the surface potential
vorticity flux. Vectors indicate the magnitude and direction of the advective interior potential vorticity flux (u, v,0)e P along the
isentropes and of the advective surface potential vorticity flux uS. Quantities are given in units of the scales listed in Tab. 1. The
delta-function §(z — z5) in the surface potential vorticity was replaced by the inverse height scale 1/H, so that the surface potential
vorticity is finite and of magnitude comparable with the interior potential vorticity.
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temperature. Panels (a), (b), and (c) of Fig. 1 each
show one of the isentropes (' = 0.8) that have col-
lapsed onto the leeward slope of the mountain and one
isentrope (6’ = 2.0) that does not intersect the moun-
tain surface (see Tab. 1 for the scales used for non-
dimensionalization of the potential temperature §' and
other quantities). The essential characteristics of the
thermal stratification in the vicinity of the mountain are
established at time ¢ = 1.8 (Fig. 1a) and evolve only
slightly during the further spin-up of the mountain wake
(Fig. 1b, c). Figure 2 shows isentropes in the y = 0
symmetry plane of the flow at time ¢ = 14.4, a time
at which a nearly steady state has been reached in the
simulation. A region of collapsed isentropes with high
and relatively uniform surface potential temperature on
the leeward slope and a region of large along-stream gra-
dients in surface potential temperature near the leeward
foot of the mountain, as predicted by inviscid linear the-
ory, are clearly recognizable.

(ii) The thermal stratification predicted by inviscid lin-
ear theory implies that, in the region of collapsed isen-
tropes on the leeward slope of the mountain, a surface
potential vorticity dipole is induced baroclinically. Since
the baroclinic component (22) of the surface potential
vorticity flux is quadratic in potential temperature fluc-
tuations &', the baroclinic induction of surface poten-
tial vorticity is not taken into account in linear theories
[cf. the analysis of Smolarkiewicz and Rotunno (1989),
which shows that the baroclinic induction of wake vor-
ticity is an effect of second order in perturbation ampli-
tude]. The across-stream component

y _ 90’ _
Kb po 26, (6 zs) 5( zs)

dominates the baroclinic component of the surface po-
tential vorticity flux in the region of collapsed isentropes
and transfers surface potential vorticity from the left
(facing downstream) of the y = 0 symmetry plane to
the right (since K; < 0 on the leeward slope). Fig-
ure 1d shows, at time ¢ = 14.4 and projected onto
the zy-plane, the convergence — V-(poKjy) of the baro-
clinic component of the surface potential vorticity flux.
Since the baroclinic component of the surface potential
vorticity flux depends only on the topography and on
the surface potential temperature field 6’, which is al-
ready close to its steady state at time ¢ = 1.8, the struc-
ture of the convergence — V-(poKj) at the earlier times
t = 1.8 and 7.2 is similar to the shown convergence at
time ¢ = 14.4. The convergence of the diabatic and fric-
tional components of the generalized potential vorticity
flux is, in the region of collapsed isentropes, an order of
magnitude smaller than the convergence of the baroclinic

component.® The convergence of the baroclinic compo-
nent of the surface potential vorticity flux on the leeward
slope of the mountain leads to a surface potential vortic-
ity dipole with negative surface potential vorticity to the
left of the y = 0 symmetry plane and positive surface
potential vorticity to the right.

(iii) The baroclinically induced surface potential vor-
ticity dipole is advected downslope through the region
of collapsed isentropes into the region of large along-
stream gradients in surface potential temperature near
the leeward foot of the mountain. Since a flow with weak
thermal diffusion as the only diabatic process effectively
cannot cross isentropes at the surface, the advective sur-
face potential vorticity flux converges and surface poten-
tial vorticity accumulates in the region of large surface
potential temperature gradients. In Fig. 1, the conver-
gence of the advective surface potential vorticity flux can
be inferred from the vectors along the surface, which in-
dicate the magnitude and direction of the advective sur-
face potential vorticity flux. The accumulation of surface
potential vorticity in the region of large surface potential
temperature gradients near the leeward foot of the moun-
tain is clearly recognizable in the succession of panels
(@), (b), and (c).

(iv) As surface potential vorticity accumulates in the
region of large surface potential temperature gradients
near the leeward foot of the mountain, the magnitude of
the conversion rate (19) between surface potential vor-
ticity and interior potential vorticity increases on both
sides of the y = 0 symmetry plane. Eventually, even
in weakly dissipative flows, the increasing conversion of
surface potential vorticity into interior potential vortic-
ity results in the surface potential vorticity dipole be-
ing separated dissipatively from the surface and being
advected with the flow as an interior potential vortic-
ity dipole. In a steady state, a balance is established

8Scale analysis gives an indication of the relative magnitudes of
the baroclinic and dissipative contributions to the convergence of
the generalized potential vorticity flux. Integrating the convergence
— V(podg) of the generalized potential vorticity flux over a volume
V' that encloses a surface patch of area A and that has infinitesimally
small faces normal to the surface, one finds that, at about half-height
on the leeward slope, the baroclinic contribution — [, V-(poKp) dx

to the integral scales like % G hM A, whereas the dissipative con-

tributions — [}, V-(poKr) dx — [an-(pod)dA = [,[Q¢ +
0'n - (Vx F)] dA scale like 2227 A (cf. the scales in Tab. 1). The
ratio of the baroclinic contribution to the dissipative contributions is

therefore HUZM =LL. Hhpt 6 (since UL/ve = 500 and
L = 8hps = 10H in the S|mulat|on considered here). This scaling
estimate underestimates the actual ratio of the baroclinic contribution
to the dissipative contributions — largely, it appears, because the scal-
ing estimate ¢, ~ U/L for the vorticity in the dissipative term over-
estimates the vorticity in the region on the leeward slope where the
baroclinic contribution to the convergence of the generalized potential

vorticity flux is largest.
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between the convergence of surface potential vorticity
flux and the conversion of surface potential vorticity
into interior potential vorticity. This balance is a conse-
quence of the fact that, in a steady state, the divergence
V-(pody) = V-(poJ + poK) of the generalized poten-
tial vorticity flux vanishes, whence, by integration over
a volume V that encloses a surface patch of area A and
that has infinitesimally small faces normal to the surface,
it follows that

—/ V-(poK) dx:/n-(pOJ) dA.  (31)
1% A

In the region of large surface potential temperature gra-
dients near the leeward foot of the mountain, the baro-
clinic component K, o 6%(n x k) is negligible in the
convergence of the surface potential vorticity flux (cf.
Fig. 1d) because the normal vector n is nearly parallel
to the vertical unit vector k. The balance (31) between
the convergence of surface potential vorticity flux and
the conversion of surface potential vorticity into interior
potential vorticity can therefore be approximated as

—/VV-(pouS) dx

~ —/ [QCU +6'n- (Vx F)] dA,
A

where we have combined the frictional components K
and Jr of the surface potential vorticity flux and of the
interior potential vorticity flux in the surface integral on
the right hand side (cf. footnotes 3 and 4). Since the
region of large surface potential temperature gradients
near the leeward foot of the mountain is anomalously
warm (cf. Fig. 2), the diffusive diabatic heating rate @
tends to be negative there, so that, since the surface po-
tential temperature anomaly 6’ is positive on the leeward
slope of the mountain, the diabatic conversion —Q¢,,
damps surface potential vorticity anomalies S o< 6'(,, by
converting positive surface potential vorticity into posi-
tive interior potential vorticity and negative surface po-
tential vorticity into negative interior potential vorticity.
The magnitude of the conversion rate —Q(, increases
with increasing magnitude of the surface potential vor-
ticity anomaly S oc 6'¢,. The frictional conversion
—0'n - (Vx F) has a similar effect: since extrema in
the relative vorticity {, = n - w, are concomitant with
the extrema in surface potential vorticity, the frictional
conversion rate —'n - (VxF) = —v.0'n - (V3w,) is
positive (negative) at the surface potential vorticity max-
imum (minimum) near the leeward foot of the mountain.

Dissipative conversion of surface potential vorticity
into interior potential vorticity thus counteracts the ac-
cumulation of surface potential vorticity due to the con-
vergence of the advective surface potential vorticity flux

and implies the separation of the surface potential vortic-
ity dipole from the surface. Separated from the surface,
the surface potential vorticity dipole is advected with
the flow as an interior potential vorticity dipole (Fig. 1).
Since the flow is only weakly dissipative, the interior
potential vorticity dipole originating in the surface po-
tential vorticity sheet is advected predominantly along
isentropes — along isentropes that intersect the surface
near the leeward foot of the mountain. On isentropes that
do not intersect the surface, such as the upper isentropes
in Fig. 1, interior potential vorticity cannot be induced
by conversion from surface potential vorticity, but arises
by vertical diffusion of interior potential vorticity from
lower-lying isentropes that intersect the surface. The in-
terior potential vorticity anomalies are therefore weaker
on isentropes that do not intersect the surface than on
isentropes that do intersect the surface (Fig. 1).

In this scenario, a wake with a pair of counterrotating
lee vortices forms by conversion of a baroclinically in-
duced surface potential vorticity dipole into an interior
potential vorticity dipole. As in the analysis of Rotunno
et al. (1999), baroclinicity is posited as fundamental for
the formation of a wake with nonzero interior potential
vorticity. The generalized potential vorticity perspec-
tive emphasizes the baroclinicity near the surface of the
mountain and shows that the principal role of dissipa-
tion is to separate from the surface the surface poten-
tial vorticity dipole that develops on the leeward slope of
the mountain and is advected downslope. The descrip-
tion from the perspective of generalized potential vor-
ticity resembles the classical descriptions of the separa-
tion of a vorticity sheet induced by frictional processes
at a boundary. The main difference from the case of a
friction-induced vorticity sheet at a surface with a no-
slip boundary condition is that in the case of a free-slip
boundary condition, a potential vorticity sheet can be in-
duced by baroclinicity at the boundary.

6. Mean budget of generalized potential vorticity in
isentropic coordinates

Replacing the inhomogeneous boundary condition at
the surface by a homogeneous boundary condition plus
boundary sources, we have formally extended the en-
tropic flow domain to all potential temperatures 8 >
0, = 0 and have thus made it time-independent. In
the extended time-independent domain, the generalized
potential vorticity and the generalized potential vortic-
ity flux with the included boundary sources replace the
potential vorticity and the potential vorticity flux of the
original time-dependent domain. Consistent with the ho-
mogeneous boundary conditions D, = 0 and H, = 0
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for the fields D and H inside the surface, the contri-
butions of the interior potential vorticity (25) and of its
flux (27) to the generalized potential vorticity and its flux
are set to zero on isentropes with potential temperature
0 < 0s(z,y,t) less than the surface potential tempera-
ture 65(x,y,t). On isentropes § = O,(x,y,t) that inter-
sect the surface, the surface potential vorticity (26) and
its flux (28) contribute as singular boundary sources to
the generalized potential vorticity and its flux.

With the generalized potential vorticity and its flux de-
fined in a time-independent entropic domain, one can de-
fine their isentropic mean fields throughout the entire en-
tropic flow domain, including the surface layer of isen-
tropes that sometimes intersect the surface. In the sur-
face layer, both the interior potential vorticity and the
surface potential vorticity contribute to the mean budget
of generalized potential vorticity; in the interior atmo-
sphere above the surface layer, only the interior poten-
tial vorticity contributes to the mean budget of general-
ized potential vorticity. In what follows, we will discuss
the structure of the mean budget of generalized potential
vorticity for flows with stationary and axisymmetric flow
statistics, for which mean fields are functions of latitude
y and potential temperature 6.

a. Definition of mean fields and eddy fields

For the discussion of the mean of the singular surface
contributions to the generalized potential vorticity bud-
get, it is convenient to define mean fields explicitly as
probabilistic means and eddy fields as fluctuations about
these means. Since we are considering compressible
flows, the mean field of a scalar field A(z,y,0,t) is de-
fined as the density-weighted mean (cf. Gallimore and
Johnson 1981; Tung 1986)

— % A
A(y,0) = 2=, (32)
P

The overbar B on a scalar field B = B(y(z,y,0,t))
that is a local function of some or all components of the
state vector y(z,y,0,t) characterizing the flow at posi-
tion (z,y,6) and time ¢ denotes the probabilistic mean
(cf. Monin and Yaglom 1971, section 3)

m%m=/wahwmw.

The probabilistic mean is the expectation value with re-
spect to the probability density ”Z o (") of the state vec-
tor 7, where the pro_bability density ﬂ'z-ﬂ(ryl) depends
parametrically on latitude y and potential temperature

6.° Eddy fields are defined as fluctuations

about the density-weighted mean A (cf. Gallimore and
Johnson 1981; Tung 1986).

The isentropic density po(z,y,0,t) appearing in the
density-weighted mean (32) must be set to zero on isen-
tropes 8 < 6,(x,y,t) inside the surface for the verti-
cal integral of the isentropic density pg(z,y,6,t) over
all potential temperatures § > 6, to be equal to the at-
mospheric mass per unit area. So the mean isentropic
density is the ensemble mean

Po(y,0) = pg H(0 —05) (34)

of the product of isentropic density pg and step func-
tion H (6 — 0,).29 Since, by assumption, the isentropic
density pp(z,y,6,t) is greater than zero on isentropes
6 > 65(z,y,t) above the surface, such that isentropic
coordinates are well-defined, the mean isentropic den-
sity py(y,0) at a given latitude y is greater than zero on
all isentropes 8 with nonzero probability of being above
the surface. The mean isentropic density py(y, ) at a
given latitude y is zero on isentropes € with vanishing
probability of being above the surface. Since the mean
isentropic density gy (y, 8) appears in the denominator of
the density-weighted mean (32), density-weighted mean
fields (32) and eddy fields (33) at a given latitude y are
defined only on isentropes # with nonzero probability of
being above the surface.

b. Mean surface potential vorticity

The surface potential vorticity S(z,y,0,t) is nonzero
only on isentropes 8 = 6,(x,y,t) at the surface. Instan-
taneous surface potential vorticities S(z,y,6,t) hence
contribute to the mean surface potential vorticity

-0 (f + Ca) 6(0 B 05)
Po

at a given latitude y only on isentropes 6 with nonzero

probability of intersecting the surface.

*

S (y,9)

(35)

SWe use the symbol w,‘f(-) as the generic symbol for a probability
density. The superscript % indicates the random variable to which the
probability density wf(-) belongs; the subscript x indicates the coor-
dinates on which the probability density depends; and the argument (-)
indicates the realization at which the probability density is evaluated.

10f there is a mixed layer with vertically uniform potential tem-
perature # = 6, adjacent to the surface, the mean isentropic density
becomes the sum pg(y,0) = pg H(0 — 8s) + om 6(8 — 85) of the
mean interior density pg H(8 — 8s) and a contribution ., 6(6 — 65)
from the mixed layer, where o, is the mixed layer mass per unit area
(cf. Held and Schneider 1999). In the present paper, we disregard the
additional complications that a mixed layer poses for defining isen-
tropic mean fields.
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If the relative vorticity ¢, of the surface flow is negli-
gible compared with the planetary vorticity f, the mean
surface potential vorticity can be approximated by

S (y,0) ~ éea(a —0,).

The mean of the delta-function,!
50— 0y) = n’(0),

is the probability density wgs (#) of the surface potential
temperature, so that the mean surface potential vorticity
is approximately

—x )

S (y,0) = % 0, (0).
In this approximation, it is evident that, if the mean isen-
tropic density gy (y, ) is a smooth function of poten-
tial temperature 6, the mean surface potential vorticity
S (y,8) varies as smoothly with potential temperature
6 as the probability density wzs (9) of the surface po-
tential temperature. Being distributed over the range
of surface potential temperatures — the range of po-
tential temperatures @ for which the probability density
wfﬁ (9) is nonzero — the singular contributions of the in-
stantaneous surface potential vorticities S(z,y, 6, t) are
smoothed out in the isentropic mean 5™ (y, 6).

That region of the entropic flow domain in which po-
tential temperatures lie within the range of surface po-
tential temperatures, such that the mean surface potential
vorticity 5" (y,6) is nonzero, will be referred to as the
surface layer. That region of the entropic flow domain in
which potential temperatures lie above the range of sur-
face potential temperatures, such that the mean surface
potential vorticity S (y, 9) is zero, will be referred to as
the interior atmosphere (cf. Held and Schneider 1999).

11The mean
50=0:) = [ 0= 0,)7 ') ay

of the delta-function can be evaluated as follows. Decomposing the
state vector y = (08,7_) into the surface potential temperature 85 as
one component and a vector «y_ consisting of all other components of
the state vector, we can write the mean as

50 —0s)= [ 6(6—-10.) (/ ™ 6 (05,72) d’y’_) de’,

because the delta-function §(8 — 65) depends only on the surface po-
tential temperature 65 and not on other components of the state vector
4. The inner integral, which extends over all components y_ of the
state vector except the surface potential temperature, yields the proba-
bility density

¥ (8]) = / 7Y o (0,7) dy'
of the surface potential temperature (cf. Papoulis 1991, chapter 7.3).

Carrying out the remaining integration [ (6 — 67) wgs (0.) do’, gives
50— 0s) = 752 (9).

c. Mean interior potential vorticity

The interior potential vorticity P(zx,y,0,t) is gener-
ally nonzero on all isentropes 8 > 6,(x,y,t) above
the surface. Instantaneous interior potential vorticities
P(z,y,0,t) hence contribute to the mean interior poten-
tial vorticity

I+ (o) H(O —0s)
Po
at a given latitude y on all isentropes § with nonzero
probability of being above the surface. That is, the mean
interior potential vorticity P (y,0) is generally nonzero
both in the interior atmosphere and in the surface layer.
In the interior atmosphere, the mean interior poten-
tial vorticity is the conventional density-weighted mean
P(y,0) = peP/ps = (f + (p)/po (cf. Tung 1986).
In the surface layer, the mean interior potential vortic-
ity can be estimated similarly to how the mean surface
potential vorticity was estimated if the relative vorticity
(y is negligible compared with the planetary vorticity f.
The mean interior potential vorticity (36) can then be ap-
proximated by

P'(y,0) = (36)

P'y,60) ~ L HE=0,).
Po
Evaluating the ensemble mean of the step function simi-

larly to the ensemble mean of the delta-function (cf. foot-
note 11), the ensemble mean of the step function

(6~ 6,) = 117 (6)

yields the cumulative distribution

0
1w 6) = | i @) a9,
(3
of surface potential temperatures. [The value st (0) of
the cumulative distribution function indicates the prob-
ability that the surface potential temperature 6;(z,y, t)
at latitude y is less than a given value 6, or equivalently,
the probability that the isentrope with potential tempera-
ture 4 is above the surface.] The mean interior potential

vorticity is therefore approximately
5+ o .
P(y,0) ~ 2107 (6).
If one makes the additional assumption of a nearly con-
stant isentropic density pg(z,y,6,t) = pJ(y) near the
surface — corresponding to the quasigeostrophic as-
sumption of constant static stability, except that here the
isentropic density p9(y) can be a function of latitude y
— the mean isentropic density (34) becomes

po(y,6) ~ pf(y) TLy: (6).
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With this approximation for the mean isentropic density,
the mean interior potential vorticity simplifies to

P 06) ~ . 37)

0
a function only of latitude y. In Section 6e, in deriving
a relationship between eddy fluxes and the mean merid-
ional mass flux along isentropes, we will use the approx-
imation that the mean interior potential vorticity in the
surface layer is a function only of latitude. Since this
approximation presumes that the relative vorticity (y is
negligible compared with the planetary vorticity f, it can
be expected to be adequate in the extratropics, but not
necessarily in the tropics.

d. Conservation of mean generalized potential vortic-
ity

The preceding discussion of the mean interior poten-
tial vorticity and of the mean surface potential vortic-
ity implies that the mean generalized potential vorticity
P, =P +35" typically makes asmooth transition from
the interior atmosphere, in which the mean generalized
potential vorticity is equal to the mean interior poten-
tial vorticity P~ to the surface layer, in which both the
mean interior potential vorticity P and the mean sur-
face potential vorticity S* contribute to the mean gen-
eralized potential vorticity. Similarly, the singular con-
tributions of the instantaneous surface potential vortic-
ity flux K(z,y, 8,t) will usually be smoothed out in the
isentropic mean J,” = J~ 4+ K of the generalized po-
tential vorticity flux, with the mean interior potential vor-
ticity flux T contributing both in the interior atmosphere
and in the surface layer, and with the mean surface po-
tential vorticity flux K contributing only in the surface
layer. Therefore, the terms in the conservation law

3 (o Py) + 0: (o J_gw*)
+0y(p0 T3 ) +06(p0 7§ ) =0 (39)

for the mean generalized potential vorticity P,”, ob-
tained by averaging the generalized potential vortic-
ity conservation law (30), will usually vary smoothly
throughout the entropic flow domain.

The conservation law (38) is exact within the approx-
imations of the hydrostatic primitive equations and al-
lows one to consider an isentropic mean budget of poten-
tial vorticity throughout the entire entropic flow domain,
including the surface layer of isentropes that sometimes
intersect the surface. The conservation law for the mean
generalized potential vorticity might be analyzed, for ex-
ample, to study the formation of a turbulent wake — as

the conservation law for the instantaneous generalized
potential vorticity was analyzed in section 5c to study
the formation of a laminar wake. Or the conservation
law for the mean generalized potential vorticity might
be analyzed to study the exchange of potential vortic-
ity between the surface layer and the interior of a flow
— for example, as Marshall and Nurser (1992) analyzed
the mean potential vorticity budget of thermocline venti-
lation.

For statistically stationary and axisymmetric flows,
the derivatives with respect to longitude « and time ¢ in
the conservation law (38) vanish,

dy (Ps J_éy*) + 09 (Po J_ge*) =0. (39)

From this form of the conservation law for the mean
generalized potential vorticity, one can deduce a bal-
ance condition that relates the mean meridional mass
flux along isentropes to eddy fluxes of interior potential
vorticity and of surface potential temperature.

e. Example: Eddy fluxes and the mean meridional
mass flux along isentropes

The conservation law (39) for the mean generalized po-
tential vorticity of statistically stationary and axisym-
metric flows takes a particularly simple form when the
generalized potential vorticity flux J, = J+K is derived
from the gauge given by Egs. (6) and (10). The surface
potential vorticity flux K = p=1(n x Hy) §(z — z5) is,
in this gauge,

K=—p' [B(n x V) + 0,0(n x ua)] 0(z — 2s),

which in isentropic coordinates becomes

K = ’;—B(eg, ~67,0),8(0-6,).  (40)
]

The horizontal derivatives 8% and 6% of the surface po-
tential temperature 6, (z, y, t) are given by Eq. (29), and,
in the hydrostatic approximation, the Bernoulli function
B = {||v|]* + ¢,T + @ contains only the horizontal
velocity v = (u, v, 0)g. Unlike the surface potential
vorticity flux (28) in the gauge given by Egs. (11) and
(13), the surface potential vorticity flux (40) in the gauge
given by Egs. (6) and (10) has no cross-isentropic com-
ponent. Since the interior potential vorticity flux (27)
likewise has no cross-isentropic component, the general-
ized potential vorticity flux has no cross-isentropic com-
ponent in this gauge, so that, in the conservation law
(39), the derivative with respect to potential temperature
6 vanishes. Integrating over latitude y, using the no-flow
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boundary condition at the poles, and substituting the in-
terior potential vorticity flux (27) and the surface poten-
tial vorticity flux (40), one finds the form

po VP + py JY + o Ty — nB0Z3(6 —6,) =0
(41)

for the conservation law (39). In this form, the mean
budget of generalized potential vorticity is a statement
of mean zonal momentum balance on isentropes. In the
interior atmosphere, only the interior potential vorticity
flux (the first three terms) is nonzero; the generalized po-
tential vorticity budget reduces to the well-known bud-
get of interior potential vorticity, which is identical with
the mean zonal momentum balance (cf. Tung 1986; An-
drews et al. 1987, chapter 3). In the surface layer, the sur-
face potential vorticity flux (the fourth term) contributes
to the generalized potential vorticity budget.

A relationship between the mean meridional mass flux
along isentropes and components of the mean general-
ized potential vorticity flux follows if the advective inte-
rior potential vorticity flux vP* = 7*P" + 4P is de-

. . —%
composed into a mean advective flux 7* P and an eddy
I
flux 9P . Dividing the mean budget of generalized po-
tential vorticity (41) by the mean interior potential vor-
.. =3 . .
ticity P and rearranging terms yields

1 1. = ———
Po :—?[p.gvP — uB6z 5(6 — 65)

+ﬁa%* +pedL |- (42)

This alternative form of the mean generalized potential
vorticity budget is valid where the mean interior poten-
tial vorticity P" is nonzero. In this form, the mean bud-
get of generalized potential vorticity represents a bal-
ance condition that relates the mean meridional mass
flux pg v* along isentropes to components of the mean
fluxes of interior and surface potential vorticity.

How the contribution pB6Z 6(6 — 8;) of the surface
potential vorticity flux is to be interpreted becomes
clearer when the generalized potential vorticity budget
(42) is integrated vertically over the surface layer, from
the potential temperature 8, of the lower boundary of
the entropic flow domain to the potential temperature 6;
of some isentrope in the interior atmosphere. Using the
hydrostatic approximation p = 1 and the approximation
(37) that the mean interior potential vorticity P~ 110
in the surface layer is a function only of latitude, so that
it can be taken outside the integral, one obtains for the
integrated contribution of the surface potential vorticity

flux

—%

6 BT 6(0 —0.)
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~
~

0;
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Integrated over the surface layer, the isentropic mean
(1) 6(8 — 85) becomes a mean 68 of surface quantities
(marked by the subscript s). Since horizontal gradi-
ents in kinetic energy 4[|v,||® at the surface are typi-
cally much smaller than horizontal gradients in enthalpy
cpTs, the surface Bernoulli function B, in the last line
of Eq. (43) can be approximated by the Montgomery
streamfunction M, = ¢,Ts + gzs. Using this approx-
imation, integrating by parts,

B0 = —(0,B;)0; ~ —(0,M,)8, ,

8

and introducing the balanced meridional velocity o5 at
the surface by

Uy = f_lasta (44)

one finds for the integral (43) the approximation

e TR C IR .
/ 1B 96 =05) 4p o 05707
7]

—*

\ P

The fluctuations (+)' = (-) — Us about the surface mean

(-)s appear on the right-hand side because the mean 7"
of the balanced meridional velocity vanishes. At any
given latitude, the contribution of the surface potential
vorticity flux to the mean meridional mass flux (42) in-
tegrated over the surface layer is approximately propor-
tional to the balanced eddy flux 367" of surface poten-
tial temperature, with the near-surface isentropic den-
sity p9 as constant of proportionality. In the Boussi-
nesq limit, the balanced meridional velocity @, is the
geostrophic meridional velocity, and the contribution of
the surface potential vorticity flux to the integrated mean
meridional mass flux is approximately proportional to
the geostrophic eddy flux of surface potential tempera-
ture.

Integrated vertically over the surface layer, then, the
balance condition (42) relating the mean meridional
mass flux along isentropes to components of the mean
fluxes of interior and surface potential vorticity flux be-
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comes approximately

0;
/ poT* db
[

i =~ = Tyt
P
%_/ %d@—pgﬂ’ﬁ’s (45)
[4

8§78
b

where we have neglected the diabatic component E* of
the interior potential vorticity flux, because it is smaller

"
than the eddy flux P by a factor of order Rossby num-
ber (Haynes and Mclntyre 1987). This approximate bal-
ance condition between the integrated mean meridional
mass flux along isentropes on the one hand and com-
ponents of the mean interior potential vorticity flux and
the balanced eddy flux of surface potential temperature
on the other hand holds in the extratropics, where the
Rossby number is small. In the extratropics, the mean
generalized potential vorticity budget (41) can be di-
vided by the mean interior potential vorticity P # 0,
the mean interior potential vorticity in the surface layer
can be approximated by P~ f/p9, and a balanced
meridional velocity @, at the surface can be defined as
being proportional to the along-surface derivative (44) of
the Montgomery streamfunction ;. Using a more re-
strictive set of assumptions, Held and Schneider (1999)
argued that, in the extratropics, the mean meridional
mass flux in the surface layer contains a component pro-
portional to the geostrophic eddy flux of surface poten-
tial temperature and that this component dominates the
mean meridional mass flux in the surface layer. The ap-
proximate balance condition (45) shows in more detail
how not only the balanced eddy flux 3.8.° of surface

—k
potential temperature, but also the eddy component o P
and the frictional component E* of the interior poten-
tial vorticity flux contribute to the mean meridional mass
flux in the surface layer.

Figure 3 shows the mass flux streamfunction

0
U(p,0) = 2ma cos(p) / poU* db’
Oy
in a simulation with an idealized GCM. The mass flux
streamfunction ¥ is the integrated mean meridional
mass flux multiplied by the lengths 27a cos(¢) of lati-
tude circles (where a is the radius of the planet and ¢
is latitude). The idealized GCM is a primitive-equation
model of an ideal-gas atmosphere with a spherical lower
boundary and with an idealized representation of ther-
modynamic processes as Newtonian relaxation of tem-
peratures toward an axially and hemispherically sym-
metric radiative equilibrium state. The primitive equa-
tions are integrated with the spectral-transform method

350 +

300 +

Potential temperature [K]

260 4

Latitude

FIGURE 3: Mass flux streamfunction ¥ [10° kgs~] in a sim-
ulation with an idealized GCM (solid lines: counterclockwise
rotation; dashed lines: clockwise rotation). The dotted lines
represent the 5%, 50%, and 95% isolines of the cumulative dis-
tribution Hzf (8) of surface potential temperatures. The thick
lines mark the mean position of the tropopause.

with T42 horizontal resolution and with 30 vertical lev-
els — a resolution sufficient to represent the energy-
containing baroclinic eddies. Model parameters are cho-
sen such that features of the simulated climate, such as
the mean meridional mass flux along isentropes, repro-
duce features of the Earth climate in an idealized fashion.
The model will be described in detail in a forthcoming
paper (Schneider and Held 2002). Included in Fig. 3 are
the 5%, 50%, and 95% isolines of the cumulative dis-
tribution HZ; (9) of surface potential temperatures. The
50% isoline, the median, approximates the mean surface
potential temperature, and the 5% and 95% isolines can
be taken as demarcating the surface layer.

The streamfunction of the mean isentropic mass flux is
characterized by an overturning cell in each hemisphere,
with equatorward mass flux in the surface layer and pole-
ward mass flux in the interior atmosphere. As discussed
by Held and Schneider (1999), qualitative aspects of the
mass flux streamfunction can be understood by assuming
that eddies tend to homogenize quantities that are mate-
rially conserved in adiabatic and inviscid flows: In the
interior atmosphere, downgradient mixing of potential

¥
vorticity leads to a southward eddy flux oP of interior
potential vorticity, which, according to the balance con-
dition (45), is associated with a poleward mass flux. And
at the surface, downgradient mixing of potential temper-
ature leads to a poleward eddy flux 17;0'55 of potential
temperature, which, according to the balance condition
(45), is associated with an equatorward mass flux in the
surface layer.

Figure 4 shows to what extent, in the simulation with
the idealized GCM, the balance condition (45) is quan-
titatively accurate at the top of the surface layer. Dis-
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FIGURE 4. Mean meridional mass flux integrated over sur-
face layer (up to the 95% isoline of the cumulative distribution
ij (8) of surface potential temperatures). The solid line rep-
resents the actual mass flux [left-hand side of Eq. (45)]; the
dashed line the approximate mass flux due to eddy fluxes and
friction [right-hand side of Eq. (45)]; and the dotted line the
mass flux due to the eddy component and frictional component
of the interior potential vorticity flux [integral on the right-hand
side of Eq. (45)]. The mass fluxes are multiplied by the lengths
27 cos(¢) of latitude circles, so that they are comparable with
the values of the streamfunction in Fig. 3.

played in Fig. 4 are terms in the balance condition (45)
with the top of the surface layer as the upper limit 6;(¢)
of the integration; the mass fluxes displayed thus are
mass fluxes integrated over the surface layer. The top of
the surface layer is taken to be the 95% isoline of the cu-
mulative distribution Ha (9) of surface potential temper-
atures (the uppermost (fotted line in Fig. 3). In midlati-
tudes, neglecting the diabatic component%* of the inte-
rior potential vorticity flux and approximating the mean
interior potential vorticity P" in the integration of the
surface potential vorticity flux by a function f/pJ of only
latitude can be seen to lead to errors of less than 20% in
the approximate mean meridional mass flux (45). In the
tropics (at latitudes || < 30°), the agreement between
the actual mean meridional mass flux and the approxi-
mate mean meridional mass flux (45) also appears to be
close, but this close agreement is coincidental: the errors
incurred by neglecting the diabatic component Jg* of
the interior potential vorticity flux and by approximating
the mean interior potential vorticity in the integration of
the surface potential vorticity flux by P~ ~ f/pJ are
individually relatively large but cancel partially in their
contribution to the mean meridional mass flux. In the
extratropical surface layer, the eddy component vP par-
tially balances the frictional component E* of the inte-
rior potential vorticity flux, and the net mass flux due to
these components of the interior potential vorticity flux
[the integral on the right-hand side of Eq. (45)] is much

smaller than the mass flux due to the eddy flux 367" of
surface potential temperature. The smallness of the net

mass flux due to the eddy component 4P and the fric-

tional component E* of the interior potential vorticity
flux in the surface layer suggests that this mass flux can
be neglected in a first approximation. [In the interior at-
mosphere, on the other hand, the mass flux due to the

"
eddy flux 9P of interior potential vorticity dominates
the mean meridional mass flux along isentropes (cf. Held
and Schneider 1999).]

Therefore, inasmuch as the approximate balance con-
dition (45) reflects the dominant contributions to the
mean meridional mass flux in the extratropics, develop-
ing a theory of the mean meridional mass flux along isen-
tropes in the extratropics involves developing theories
for the eddy fluxes of interior potential vorticity along
isentropes and of potential temperature along the surface
(Held and Schneider 1999). Since the problem of under-
standing the thermal stratification of the atmosphere is
equivalent to the problem of understanding the distribu-
tions of potential temperature along the surface and of
mass along isentropes, a theory of the mean meridional
mass flux along isentropes will be equivalent to a theory
of the thermal stratification. A theory of the extratropical
thermal stratification that is based on the balance condi-
tion (45), paired with theories for the eddy fluxes of inte-
rior potential vorticity and surface potential temperature,
will be proposed in a forthcoming paper (Schneider and
Held 2002).

7. Summary

We have presented a formulation of potential vorticity
dynamics that encompasses boundary effects. For arbi-
trary flows, the generalization of the potential vorticity
concept to a sum of the conventional interior potential
vorticity and a singular surface potential vorticity allows
one to replace the inhomogeneous boundary condition
for potential vorticity dynamics by a simpler homoge-
neous boundary condition. For the generalized poten-
tial vorticity, a conservation law holds that is similar to
the well-known conservation law for the interior poten-
tial vorticity. The generalized potential vorticity reduces
in the quasigeostrophic limit to Bretherton’s (1966) gen-
eralized quasigeostrophic potential vorticity, which in-
cludes a surface potential vorticity that is proportional
to surface potential temperature fluctuations. Not be-
ing limited to quasigeostrophic flows, however, the gen-
eralized potential vorticity concept can be used to de-
scribe flows such as mesoscale or planetary-scale flows,
for which the quasigeostrophic approximation is inade-
quate.
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The formal framework of generalized potential vor-
ticity dynamics issues from field equations in which the
potential vorticity and the potential vorticity flux appear
as sources of flow fields in the same way in which an
electric charge and an electric current appear as sources
of fields in electrodynamics. The field equations make
manifest that the potential vorticity and the potential vor-
ticity flux can be interpreted as sources of absolute an-
gular momentum and of energy of the flow along isen-
tropes. The boundary sources — the surface potential
vorticity and the surface potential vorticity flux — that
must be included in the field equations if the usual in-
homogeneous boundary condition for potential vorticity
dynamics is replaced by a simpler homogeneous bound-
ary condition were determined with techniques from
electrodynamics. We derived functional forms of the
surface potential vorticity and of its flux, pointed out
ambiguities in these functional forms, and discussed the
conservation law for the generalized potential vorticity.

In two examples, we demonstrated how the general-
ized potential vorticity and its conservation law can be
used to analyze the dynamical role of boundaries in flows
for which the quasigeostrophic approximation is inade-
quate.

First, we outlined a theory of how a wake with lee
vortices can form in flows past a mountain that has no
adjacent frictional boundary layer. Even in adiabatic and
frictionless flows, generalized potential vorticity is not,
in general, materially conserved but can be induced by
baroclinicity at a boundary. In stratified flows past a suf-
ficiently high mountain, generalized potential vorticity
can be induced by baroclinicity on the leeward slope of
the mountain. As illustrated in a simulation of a strat-
ified Boussinesq flow, weak dissipative processes suf-
fice to separate a baroclinically induced surface potential
vorticity dipole from the leeward slope of a mountain
and to advect it as an interior potential vorticity dipole
along isentropes that intersect the surface. Thus a wake
with a pair of counterrotating lee vortices can form by
separation of a baroclinically induced generalized poten-
tial vorticity sheet from the surface of a mountain, even
when the mountain has no adjacent frictional bound-
ary layer from which friction-induced vorticity could be
transferred into the wake in the interior of the flow.

Second, we derived a balance condition that relates
the extratropical mean meridional mass flux along isen-
tropes to eddy fluxes of interior potential vorticity and of
surface potential temperature. Replacing the inhomoge-
neous boundary condition of fluctuating potential tem-
perature by a homogeneous boundary condition of con-
stant potential temperature formally renders the entropic
domain of generalized potential vorticity dynamics time-
independent. Thus the generalized potential vorticity

concept allows the consideration of a mean potential vor-
ticity budget throughout the entire entropic flow domain,
including the surface layer of isentropes that sometimes
intersect the surface. For statistically stationary and axi-
symmetric flows, the mean budget of generalized poten-
tial vorticity implies an approximate balance condition
between the mean meridional mass flux along isentropes
on the one hand and eddy fluxes of interior potential vor-
ticity along isentropes and of potential temperature along
the surface on the other hand. In the extratropical sur-
face layer, the approximations that lead to this balance
condition incurred errors of less than 20% in the mean
meridional mass flux simulated with an idealized GCM.
Since the problem of understanding the thermal stratifi-
cation of the atmosphere is equivalent to the problem of
understanding the distributions of potential temperature
along the surface and of mass along isentropes, a theory
of the extratropical thermal stratification can be based
upon the balance condition between the mean meridional
mass flux and the eddy fluxes, paired with theories for
the eddy fluxes. Such a theory will be proposed in a
forthcoming paper (Schneider and Held 2002).

These two examples illustrate how the generalized po-
tential vorticity concept extends the conventional poten-
tial vorticity concept to encompass boundary effects in
flows that need not be balanced. For balanced flows,
the inversion principle known from conventional poten-
tial vorticity dynamics carries over to generalized po-
tential vorticity dynamics: like the conventional poten-
tial vorticity combined with typically inhomogeneous
boundary conditions, the generalized potential vorticity
combined with simpler homogeneous boundary condi-
tions contains all relevant information about flows that
satisfy fairly general balance conditions (cf. Hoskins
et al. 1985; Mclntyre and Norton 2000). Therefore, as
Bretherton’s extension of the quasigeostrophic potential
vorticity contains all relevant information about quasi-
geostrophic flows and their boundary conditions, the
generalized potential vorticity contains all relevant in-
formation about more general balanced flows and their
boundary conditions.
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APPENDIX

Notation and Symbols

Most symbols follow standard meteorological and
mathematical conventions. Listed here are only those
symbols that are used repeatedly in different sections of
this paper.

0s

ij,k

3,3,

D, Po
P, P,

Partial derivative with respect to space or time
coordinate s

Material derivative D/Dt = 0; + u - V fol-
lowing the three-dimensional flow u

Mean

Fluctuation ()" = (-) — (-) about mean (-)

Mean (pg -) / po Weighted by isentropic density
Pe

O -0

Fluctuation (7) =

weighted mean (-)*

about density-

Specific heat at constant pressure
Exner function E = ¢, (p/po)"

Coriolis parameter f = 2||Q|| sin ¢, where ¢
is latitude

Gravitational acceleration
Frictional force per unit mass

Scale factor h = (8,0)~! of isentropic coor-
dinates

Heaviside step function

Local Cartesian unit vectors (eastward, north-
ward, upward)

Potential vorticity flux, generalized potential
vorticity flux

Surface potential vorticity flux
Montgomery streamfunction M = ¢, T + gz

Unit normal vector at the surface (directed up-
ward)

Pressure, constant reference pressure

Potential vorticity, generalized potential vor-
ticity

Diabatic heating rate Q = D§/Dt

Ua

m’y)’z

4(-)
CO'7C9

9,60

05,03

Wr

Wa

Radius vector r = r(x) from center of the
planet to point x in the atmosphere

Gas constant

Surface potential vorticity
Time

Temperature

Velocity components (eastward, northward,
upward)

Three-dimensional velocity [u = (u,v,w) in
local Cartesian coordinates]

Three-dimensional absolute velocity u, =
ut+Qxr

Horizontal velocity [v = (u,v,0) in local
Cartesian coordinates]

Local Cartesian coordinates (eastward, north-
ward, upward)

Three-dimensional position vector [x =
(z,y, 2) in local Cartesian coordinates]

Dirac delta-function

Relative vorticity of horizontal flow v along
surface [(, = n - (Vxv)] and along isen-
tropes [¢y = V8- (Vx v)/|| V][]

Potential temperature § = T'(po/p)*, constant
reference potential temperature

Derivative 0, ,(x,y,t) of surface potential
temperature 6, (x, y, t) with respect to z, y

Adiabatic exponent £ = R/c,

Normalization factor p = (1 + IIst||2)71/2

Latitude
Geopotential

Probability density function of variable 4 at
position x

Cumulative distribution function of variable ¢
at position x

Density

Isentropic density pg = g~ '9yp [density in
(z,y,6)-space]

Relative vorticity w, = Vxu

Absolute vorticity w, = w, + 2Q

Angular velocity of planetary rotation
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